

Semiotic Engineering Tools for the
Inspection of Meanings Inscribed in
Software

Abstract
In this position paper, we briefly present SigniFYI Suite,
Semiotic Engineering tools for the investigation of hu-
man meanings inscribed in software. From a semiotic
perspective, human values are signified in software.
Our contribution to the debate about human values em-
bedded in software is an overview of this perspective.

Author Keywords
Human meanings inscribed in software; semiotic engi-
neering; SigniFYI.

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g.,
CameraReady

Introduction
All products of design carry not only the imprint of their
designers’ intent, but also a large collection of human
values that are more or less widely shared by individu-
als, groups, organizations, societies and cultures. With
software artifacts, the carriers of design intent and hu-
man values manifestations are the meanings inscribed
in them, which can be modified and expanded by those
who use or reuse them, as end users, learners or pro-
fessional developers. Therefore, one of the basic re-
quirements for the study of values embedded in soft-
ware is the study of meanings inscribed in it.

This work is licensed for use in accordance with the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-
ND 4.0) license agreement. See terms and conditions at:

https://creativecommons.org/licenses/by-nc-nd/4.0/

Clarisse S. de Souza
SERG / Dep. Informatica
PUC-Rio
R. M. de S. Vicente 225
22451-900 Rio de Janeiro, RJ
clarisse@inf.puc-rio.br

Renato F. G. Cerqueira
IBM Research Brazil
Av. Pasteur, 138-146
22296-900 Rio de Janeiro, RJ
rcerq@br.ibm.com

Luiz M. Afonso
SERG / Dep. Informatica
PUC-Rio
R. M. de S. Vicente 225
22451-900 Rio de Janeiro, RJ
lafonso@inf.puc-rio.br

Rafael R. M. Brandão
Juliana S. J. Ferreira
IBM Research Brazil
Av. Pasteur, 138-146
22296-900 Rio de Janeiro, RJ
{rmello, jjansen}@br.ibm.com

p. 1

This position paper presents a bird’s eye view of the
SIGNIFYI Suite of tools for a semiotic investigation of
human meanings inscribed in software [7]. SigniFYI is
founded on Semiotic Engineering [5], which started as
a theory of human-computer interaction and has re-
cently been expanded to support the study of semiotic
aspects and dimensions of notation-supported concep-
tual modeling and programming activities in software
development.

As a contribution to the debate about human values
embedded in software, we propose that the SigniFYI
Suite can be used in a variety of qualitative, meaning-
intensive, research studies. Results can then be used as
a theoretically-founded springboard for subsequent re-
search projects, using other theories, methodologies
and research designs.

Semiotic Engineering in a nutshell
The study of human-computer interaction (HCI) has
been profoundly influenced by cognitive [3,11] and er-
gonomic [9,13] perspectives. Usability is one of the
most important qualities of software products, and it
amounts to the software’s ability to meet its users’
needs and expectations within the range of purposes
that it has been designed to achieve. In this tradition,
the humans under study are software systems’ users,
which means that the values under consideration in HCI
design have been typically those of the users’.

However, since the early ages of HCI, a not-as-popular
alternative to cognitive and ergonomic approaches is
Computer Semiotics [1]. With different backgrounds
and interests, researchers in this group share the view
that there are more humans involved in HCI than the
users. Interaction is, in their view, a special case of

computer-mediated social communication, where soft-
ware producers and consumers communicate with each
other through systems’ interface signs [10,8].

Semiotic Engineering [5] is a theory of HCI according to
which human-computer interaction is a case of meta-
communication, that is, the producers’ communication
(in verbal or non-verbal mode) about how, when,
where, why, and to what effects the consumers may or
should communicate with a software product. The en-
tire communication about communication unfolds grad-
ually as users interact with the system, in the same
way as a playwright’s message to the audience of his or
her play unfolds gradually as the audience is exposed
to the interactions and dialogs between the characters
in the play. The centrality of communication in this per-
spective defines three classes of HCI ‘interlocutors’ en-
gaged in social communication: software producers
(designers and developers), software consumers (us-
ers) and software itself, which represents its producers
vis à vis the consumers at interaction time [4]. Semi-
otic Engineering has centered on the study of meta-
communication through systems interfaces and has de-
fined its own methods, concepts and models to investi-
gate communicability, the counterpart of usability. Its
interpretive methods allow for the study of the emission
of the metacommunication message (by producers), as
well as for its reception (by consumers) [6]. They cen-
ter on the investigation of meanings, as expressed by
software producers and consumers, during/about inter-
action supported by interface signs.

The SigniFYI Suite
Interface signs are the outermost manifestation of hu-
man meanings that contribute to software develop-

p. 2

ment. Therefore, in semiotic terms, there is an ontolog-
ical continuity between outer and inner software signs.
The most obvious aspect of it is the relation between
the externally perceived and interpreted system behav-
ior and the internal program code and system architec-
ture. This is a causal relation that is affected by other
relations with and between additional software develop-
ment signs, such as those that are present in concep-
tual models and specifications, requirements and vari-
ous kinds of design representations, for instance.

The SigniFYI Suite is a set of five Semiotic Engineering
tools with which we can trace inner and outer human
meanings in software [7]. The first one – SigniFYIng
Message – is a conceptual tool to inspect constituent
dimensions of metacommunication. It includes the de-
signers’ and developers’ beliefs about who is involved in
metacommunication, what these people know, what
they need to do, what they prefer and expect, where
they are, in which potential circumstances, and for
what purposes they are using the software. It also in-
cludes the designers’ and developers’ general descrip-
tion of what the software is and how it works, as well
as their commentary on other possible contexts of use,
adaptations and extensions that they think are compat-
ible with their product’s design intent and principles.

SigniFYIng Interaction is a Semiotic Engineering in-
spection method to probe signs inscribed in systems in-
terfaces. It can be used not only to study the end user
interface of a software system, but also the user inter-
faces of various software development tools, such as
IDE’s, as well as modeling and documentation tools.
This is an important feature of SigniFYI because soft-
ware developers, as users, are exposed to interaction
blunders whose consequences may affect their end

product’s interface. SigniFYIng Models and SigniFY-
Ing APIs are two additional constituents of the suite
that, as their name suggests, allow us to probe signs of
human meanings inscribed in software models and pro-
gramming packages (which is what we generally refer
by APIs). Because notations are critically important in
both cases, these constituents also incorporate the use
of the Cognitive Dimensions of Notations (CDN) frame-
work [2].

Finally, SigniFYIng Traces is a conceptual blueprint
for a capture and access tool that can be used to sup-
port the documentation of critically important “signs”
for an investigation of human meanings inscribed in
software. It can document (portions of) various kinds of
software development artifacts, as well as (representa-
tions of) the final end product itself. It can also docu-
ment software execution and use, as well as discus-
sions and analysis held by developers and other experts
about the software behavior, design alternatives, usa-
bility, communicability and so on. It can additionally be
used to document the users’ experience as well as their
opinions, perceptions and suggestions in user-centered
activity during software design and development. Most
importantly, however, SigniFYIng Traces can be used
to build a software design and development commu-
nity’s knowledge base and practice repertoire, and sup-
port continued reflection on action and reflection on
practice [12].

Since the SigniFYI Suite is anchored in Semiotic Engi-
neering, it provides an underlying metacommunication-
centered ontology that guides all interpretive studies
and inspections of meanings inscribed in software. Fur-
thermore, because its metacommunication message
structure underlies the entire suite, it provides a thread

p. 3

to connect inner and outer software signs of human
meanings inscribed in software.

Conclusion
Semiotic Engineering is a well-positioned theory to sup-
port some aspects of an investigation of values embed-
ded in software. It provides a systematic and cohesive
set of tools to investigate meanings in software sys-
tems’ design, development and use. Although it is lim-
ited by its narrow focus on metacommunication be-
tween software producers and consumers and by meth-
odological commitments with qualitative research, it
can support various steps in larger research projects
about values and software. Moreover, metacommunica-
tion meanings can support further investigations of val-
ues with other stakeholders (e.g. software companies,
internet legislators), other dimensions (e.g. political
and ethical), as well as other research designs (e.g.
predictive studies and mixed method investigations).
We thus believe that our approach can be an important
asset as our community’s interest in values embedded
in software gains momentum.

Acknowledgements
This work is partially funded by the Brazilian National
Council for Scientific and Technological Development.

References
1. Peter B. Andersen 1990. A theory of computer se-

miotics. Cambridge. Cambridge University Press.
2. Alan Blackwell and Thomas Green. 2003. "Nota-

tional systems–the cognitive dimensions of nota-
tions framework." In J. M. Carroll (Ed.) HCI Models,
Theories, and Frameworks: Toward an Interdiscipli-
nary Science. Boston, Mass. Morgan Kaufmann.

3. Stuart K Card., Thomas P. Moran, Allen Newell.
1983. The Psychology of Human Computer Interac-
tion. Hillsdale, NJ. Lawrence Erlbaum Associates.

4. Clarisse S. de Souza. 2005a. "Semiotic engineer-
ing: bringing designers and users together at inter-
action time." Interacting with Computers 17(3)
317-341.

5. Clarisse S. de Souza. 2005b. The semiotic engi-
neering of human-computer interaction. Cam-
bridge, Mass. The MIT Press.

6. Clarisse S. de Souza and Carla F. Leitão. 2009. Se-
miotic engineering methods for scientific research
in HCI. San Rafael, CA. Morgan & Claypool.

7. Clarisse S. de Souza, Renato F. G. Cerqueira, Luiz
M. Afonso, Rafael R. M. Brandão, Juliana S. J.
Ferreira. 2016. Software developers as users.
Chem. Springer International.

8. John Kammersgaard. 1988. "Four different per-
spectives on human–computer interaction." Inter-
national Journal of Man-Machine Studies 28(4)
343-362.

9. John Long and Andy Whitefield. 1989. Cognitive er-
gonomics and human-computer interaction. Cam-
bridge. Cambridge University Press.

10. Mihai Nadin. 1988. "Interface design and evalua-
tion–semiotic implications." In H. R. Hartson and D.
Hix (Eds.) Advances in human-computer interaction
2. 45-100.

11. Donald A. Norman and Stephen W. Draper. 1986.
User centered system design. Hillsdale, NJ. Law-
rence Erlbaum Associates.

12. Donald A. Schön. 1983. Reflective practitioner. New
York, NY. Basic Books.

13. Brian Shackel and Simon J. Richardson. 1991. Hu-
man factors for informatics usability. Cambridge.
Cambridge University Press.

p. 4

